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Capacity
Cold temperature increases the internal resistance and diminishes the capacity. Batteries that 
would provide 100 percent capacity at 27°C (80°F) will typically deliver only 50 percent at –18°C 
(0°F). The capacity decrease is linear with temperature.
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Charge Voltage 
(inc. as temp dec.)
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Charge Lag
Specific gravity does not respond instantly throughout the electrolyte. Instead, the specific 
gravity is highest at the plates, where sulfate ions are released and the greatest number of them 
are concentrated. Farther from the plates, specific gravity remains lower until the freed sulfate 
ions have diffused evenly throughout the electrolyte.
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Acid Stratification
The acid concentration is light on top and heavy on the bottom. This raises the open circuit 
voltage and the battery appears fully charged. AGMs do not suffer from this. Acid stratification 
occurs if the battery dwells at low charge (below 80 percent), never receives a full charge and 
has shallow discharges.
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Low Value

1.  The battery is old and approaching the end of its life.
2.  The battery was left in a state of discharge too long.
3.  Electrolyte was lost due to spillage or overflow.
4.  A weak or bad cell is developing.
5.  Battery was watered excessively previous to testing.
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Higher Volts

Lead acid batteries are sluggish and cannot convert lead sulfate to lead and lead dioxide quickly 
enough during charge. As a result, most of the charge activities occur on the plate surfaces. This 
induces a higher state-of-charge on the outside than in the inner plate. A battery with surface 
charge has a slightly elevated voltage. To normalize the condition, switch on electrical loads to 
remove about one percent of the battery’s capacity, or allow the battery to rest for a few hours. 
Surface charge is not a battery defect but a reversible condition resulting from charging.
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Soft is a a recently discharged battery and very easy to recharge. If you apply the low charge 
rate long enough you will convert all the sulfation due to discharge. It is like soft moss on the 
plates.
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Medium
Medium sulfate is a battery that has been left in a partially discharged state for one to four 
months. Like maple syrup, the sulfate will start to crystalize after a month or two. This can 
usually be recovered with a charge of greater then 10% to 20% AH capacity rate in amps. Some 
small hardened crystals may flake off and eventually drop to bottom of cell.
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in electrolyte and lead in plates. It builds up on the lead plates when battery is not recharged 
within two to six months.
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>14.4V = Gassing FLAs can handle higher voltage than AGMs due to ability to vent hydrogen (aka ‘gas’ under 
heavy charge), AGMs can handle heavier current than FLAs
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CEF < 50%

Charge efficiencies at 90% SOC and greater were measured at less than 50% for the battery 
tested here, requiring a PV array that supplies more than twice the energy that the load 
consumes for a full recovery charge. Many batteries in PV systems never reach a full state of 
charge, resulting in a slow battery capacity loss from stratification and sulfation over the life of 
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CEF = 55%

the incremental battery charging efficiency from 79% to 84% is only 55%. This is particularly 
significant in PV systems where the designer expects the batteries to normally operate at SOC 
above 80%, with deeper discharge only occurring during periods of extended bad weather. In 
such systems, the low charge efficiency at high SOC may result in a substantial reduction in 
actual available stored energy because nearly half the available energy is serving losses rather 
than charging the battery.
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C1 vs. C/4
C1 = 1 hour to discharge a battery completely, C/4 = 4 hours to...
Battery capacity diminished with increased discharge rate, T-105 battery has a C/20 = 225Ah 
and C/100 = 250Ah, and is caused by internal resistance of the battery; Peukert Effect describes 
this phenomenon 
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After full charge
Batteries should be watered after charging unless the plates are exposed, then add just enough 
water to cover the plates. After a full charge, the water level should be even in all cells and 
usually 1/4" to 1/2" below the bottom of the fill well in the cell (depends on battery size and 
type).
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50% Lead-Acid batteries do NOT have a memory, and the rumor that they should be fully discharged 
to avoid this "memory" is totally false and will lead to early battery failure.
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Discharge

During discharge, both plates return to lead sulfate. The 
process is driven by the conduction of electrons from the 
positive plate back into the cell at the negative plate.
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Pb(s) + HSO−4(aq) → PbSO4(s) + H+(aq) + 2e− 
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Subsequent charging places the battery back in its charged 
state, changing the lead sulfates into lead and lead oxides. 
The process is driven by the forcible removal of electrons 
from the negative plate and the forcible introduction of them 
to the positive plate.
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Overcharging
Overcharging with high charging voltages generates oxygen and hydrogen gas by electrolysis of 
water, which is lost to the cell. Periodic maintenance of lead acid batteries requires inspection of 
the electrolyte level and replacement of any water that has been lost.
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Acid Dissociation
Measure of the strength of an acid in solution. The pKa increases with decreasing temperature in 
exothermic reactions; decreasing temperature = decreased dissociation of an acid into solution. 
Strong acids are almost completely dissociated in aqueous solution, to the extent that the conc. 
of the undissociated acid becomes undetectable.
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Gassing
After full charge, gassing releases about 1 cubic foot of hydrogen per cell for each 63 ampere-
hours supplied. Since a 4 % concentration of hydrogen in air is explosive, ventilation of battery 
rooms is required for safety.
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Solubility of Gasses 
(760mm HG)

15 59 10.1 7.5

density = 1.43 mg/mL 
(700x less dense than 

water) 15 59 7.9 5.9

Solubility of Gasses 
(760mm HG)

20 68 9.1 6.8

density = 1.43 mg/mL 
(700x less dense than 

water)

20 68 7.2 5.4

Solubility of Gasses 
(760mm HG)

25 77 8.3 6.3

density = 1.43 mg/mL 
(700x less dense than 

water)

25 77 6.6 5
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30 86 7.6 5.9 30 86 6.1 4.7
Detecting 
Hydrogen

Hydrogen gas in the air “tastes” salty when you breathe it. It reminds me of being near the 
ocean, and this is a good indicator that more ventilation is needed.
Hydrogen gas in the air “tastes” salty when you breathe it. It reminds me of being near the 
ocean, and this is a good indicator that more ventilation is needed.
Hydrogen gas in the air “tastes” salty when you breathe it. It reminds me of being near the 
ocean, and this is a good indicator that more ventilation is needed.
Hydrogen gas in the air “tastes” salty when you breathe it. It reminds me of being near the 
ocean, and this is a good indicator that more ventilation is needed.
Hydrogen gas in the air “tastes” salty when you breathe it. It reminds me of being near the 
ocean, and this is a good indicator that more ventilation is needed.
Hydrogen gas in the air “tastes” salty when you breathe it. It reminds me of being near the 
ocean, and this is a good indicator that more ventilation is needed.
Hydrogen gas in the air “tastes” salty when you breathe it. It reminds me of being near the 
ocean, and this is a good indicator that more ventilation is needed.
Hydrogen gas in the air “tastes” salty when you breathe it. It reminds me of being near the 
ocean, and this is a good indicator that more ventilation is needed.
Hydrogen gas in the air “tastes” salty when you breathe it. It reminds me of being near the 
ocean, and this is a good indicator that more ventilation is needed.
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